Matemática - Funções (2)

Domínio e imagem de uma função

domínio de uma função de A em B é sempre o próprio conjunto de partida, ou seja, D=A. Se um elemento x  A estiver associado a um elemento y  B, dizemos que y é a imagem de x (indica-se y=f(x) e lê-se “y é igual a f de x”).
Observe o domínio e a imagem na função abaixo.
Outro exemplo: se f é uma função de IN em IN (isto significa que o domínio e o contradomínio são os números naturais) definida por y=x+2, então temos que:
  • A imagem de 1 através de f é 3, ou seja, f(1)=1+2=3;
  • A imagem de 2 através de f é 4, ou seja, f(2)=2+2=4;
De modo geral, a imagem de x através de f é x+2, ou seja: f(x)=x+2.
Em uma função f de A em B, os elementos de B que são imagens dos elementos de A através da aplicação de f formam o conjunto imagem de f. Segundo o conceito de função, existem duas condições para que uma relação f seja uma função:
1ª) O domínio deve sempre coincidir com o conjunto de partida, ou seja, todo elemento de A é ponto de partida de flecha. Se tivermos um elemento de A do qual não parta flecha, a relação não é função.
2ª) De cada elemento de A deve partir uma única flecha. Se de um elemento de A partir mais de uma flecha, a relação não é função.
Observações:
  • Como x e y têm seus valores variando nos conjuntos A e B, recebem o nome de variáveis.
  • A variável x é chamada variável independente e a variável y, variável dependente, pois para obter o valor de y dependemos de um valor de x.
  • Uma função f fica definida quando são dados seu domínio (conjunto A), seu contradomínio (conjunto B) e a lei de associação y=f(x).

Exercícios resolvidos

1) Considere a função f: A  B representada pelo diagrama a seguir:

Determine:
a) o domínio (D) de f;
b) f(1), f(-3), f(3) e f(2);
c) o conjunto imagem (Im) de f;
d) a lei de associação
Resolução:
a) O domínio é igual ao conjunto de partida, ou seja, D=A.
b) f(1)=1, f(-3)=9, f(3)=9 e f(2)=4.
c) O conjunto imagem é formado por todas imagens dos elementos do domínio, portanto:
Im = {1,4,9}.
d) Como 12=1, (-3)2=9, 32=9 e 22=4, temos y=x2.
2) Dada a função f: IRIR (ou seja, o domínio e o contradomínio são os números reais) definida por f(x)=x2-5x+6, calcule:
a) f(2), f(3) e f(0);
b) o valor de x cuja imagem vale 2.
Resolução:
a) f(2)= 22-5(2)+6 = 4-10+6 = 0
f(3)= 32-5(3)+6 = 9-15+6 = 0
f(0)= 02-5(0)+6 = 0-0+6 = 6
b) Calcular o valor de x cuja imagem vale 2 equivale a resolver a equação f(x)=2, ou seja, x2-5x+6=2. Utilizando a fórmula de Bhaskara encontramos as raízes 1 e 4. Portanto os valores de x que têm imagem 2 são 1 e 4.

Obtenção do domínio de uma função

O domínio é o subconjunto de IR no qual todas as operações indicadas em y=f(x) são possíveis. Vamos ver alguns exemplos:
Agora o denominador: como 3-x está dentro da raiz, devemos ter 3-x0, mas além disso ele também está no denominador, portanto devemos ter 3-x0. Juntando as duas condições devemos ter: 3-x > 0, ou seja, x < 3 (condição 2). Resolvendo o sistema formado pelas condições 1 e 2 temos:

Devemos considerar o intervalo que satisfaz as duas condições ao mesmo tempo. Portanto, D={x  IR | 2  x < 3}.

Construção do gráfico cartesiano de uma função

Para construir o gráfico de uma função f, basta atribuir valores do domínio à variável x e, usando a sentença matemática que define a função, calcular os correspondentes valores da variável y.
Vamos construir o gráfico da função definida por y=x/2. Escolhemos alguns valores para o domínio, como por exemplo D={2,4,6,8}. Agora calculamos os respectivos valores de y. Assim temos:
x=2  y=2/2 = 1
x=4  y=4/2 = 2
x=6  y=6/2 = 3
x=8  y=8/2 = 4
Então, montamos a seguinte tabela:
Identificamos os pontos encontrados no plano cartesiano:
O gráfico da função será uma reta que passará pelos quatro pontos encontrados. Basta traçar a reta, e o gráfico estará construído.
Obs: para desenhar o gráfico de uma reta são necessários apenas dois pontos. No exemplo acima escolhemos 4 pontos, mas bastaria escolher dois elementos do domínio, encontrar suas imagens, e logo após traçar a reta que passa por esses 2 pontos.

Raízes de uma função

Dada uma função y=f(x), os valores de x para os quais f(x)=0 são chamados raízes da função. No gráfico cartesiano, as raízes são abscissas dos pontos onde o gráfico corta o eixo horizontal. Observe o gráfico abaixo:
Neste gráfico, temos:
f(x1)=0
f(x2)=0
f(x3)=0
Portanto x1, x2 e x3 são raízes da função.

Propriedades de uma função

Estas são algumas propriedades que caracterizam uma função f:AB.

Função sobrejetora

Dizemos que uma função é sobrejetora se, e somente se, o seu conjunto imagem for igual ao contradomínio, isto é, se Im=B. Em outras palavras, não pode sobrar elementos no conjunto B sem receber flechas. Exemplo:

Função injetora

A função é injetora se elementos distintos do domínio tiverem imagens distintas, ou seja, dois elementos não podem ter a mesma imagem. Portanto, não pode haver nenhum elemento no conjunto B que receba duas flechas. Exemplo:
Por exemplo, a função f:IRIR definida por f(x)=3x é injetora, pois se x1x2 então 3x13x2, portanto f(x1)f(x2).

Função bijetora

Uma função é bijetora quando ela é sobrejetora e injetora ao mesmo tempo. Por exemplo, a função f: IRIR definida por y=3x é injetora, como vimos no exemplo anterior. Ela também é sobrejetora, pois Im=B=IR. Logo, esta função é bijetora.
Já a função f: ININ definida por y=x+5 não é sobrejetora, pois Im={5,6,7,8,...} e o contradomínio CD=IN, mas é injetora, já que valores diferentes de x têm imagens distintas. Então essa função não é bijetora.
Resumindo, observe os diagramas abaixo:
  • Essa função é sobrejetora, pois não sobra elemento em B.
  • Essa função não é injetora, pois existem dois elementos com mesma imagem.
  • Essa função não é bijetora, pois não é injetora.
  • Essa função é injetora, pois elementos de B são “flechados” só uma vez.
  • Essa função não é sobrejetora, pois existem elementos sobrando em B.
  • Essa função não é bijetora, pois não é sobrejetora.
  • Essa função é injetora, pois elementos de B são “flechados” só uma vez.
  • Essa função é sobrejetora, pois não existem elementos sobrando em B.
  • A função é bijetora, pois é injetora e sobrejetora.


Função par e função ímpar

Dada uma função f: AB, dizemos que f é par se, e somente se, f(x)=f(-x) para todo x  A. Ou seja: os valores simétricos devem possuir a mesma imagem. O diagrama a seguir mostra um exemplo de função par:
Por exemplo, a função f: IRIR definida por f(x)=x2 é uma função par, pois f(x)=x2=(-x)2=f(-x). Podemos notar a paridade dessa função observando o seu gráfico:
Notamos no gráfico que existe uma simetria em relação ao eixo vertical. Elementos simétricos têm a mesma imagem. Os elementos 2 e –2, por exemplo, são simétricos e possuem a imagem 4.
Por outro lado, dada uma função f: AB, dizemos que f é ímpar se, e somente se, f(-x)=-f(x) para todo x  A. Ou seja: valores simétricos possuem imagens simétricas. O diagrama a seguir mostra um exemplo de função ímpar:
Por exemplo, a função f: IRIR definida por f(x)=x3 é uma função ímpar, pois f(-x)=(-x)3=-x3=-f(x). Podemos notar que a função é ímpar observando o seu gráfico:
Notamos no gráfico que existe uma simetria em relação a origem 0. Elementos simétricos têm imagens simétricas. Os elementos 1 e –1, por exemplo, são simétricos e possuem imagens 1 e –1 (que também são simétricas).
Obs: Uma função que não é par nem ímpar é chamada função sem paridade.
Exercício resolvido:
Classifique as funções abaixo em pares, ímpares ou sem paridade:
a) f(x)=2x
f(-x)= 2(-x) = -2x  f(-x) = -f(x), portanto f é ímpar.
b) f(x)=x2-1
f(-x)= (-x)2-1 = x2-1  f(x)=f(-x), portanto f é par.
c) f(x)=x2-5x+6
f(-x)= (-x)2-5(-x)+6 = x2+5x+6
Como f(x)f(-x), então f não é par.
Temos também que –f(x)f(-x), logo f não é ímpar.
Por não ser par nem ímpar, concluímos que f é função sem paridade.

Função crescente e função decrescente

Dada uma função f: AB, dizemos que f é crescente em algum conjunto A’A, se, e somente se, para quaisquer x1  A’ e x2  A’, com x1<x2, tivermos f(x1)<f(x2).
Por exemplo, a função f: IRIR definida por f(x)=x+1 é crescente em IR, pois:
x1<x2 => x1+1<x2+1 => f(x1)<f(x2)
Ou seja: quando os valores do domínio crescem, suas imagens também crescem.
Por outro lado, dada uma função f: AB, dizemos que f é decrescente em algum conjunto A’  A, se, e somente se, para quaisquer x1  A’ e x2  A’, com x1<x2, tivermos f(x1)>f(x2).
Por exemplo, a função f: IRIR definida por f(x)=-x+1 é decrescente em IR, pois:
x1<x2 => -x1>-x2 => -x1+1>-x2+1 => f(x1)>f(x2).
Ou seja: quando os valores do domínio crescem, suas correspondentes imagens decrescem. Exemplos:

Este é um exemplo de função crescente. Podemos notar no gráfico que à medida que os valores de x vão aumentando, suas imagens também vão aumentando.

Este é um exemplo de função decrescente. Podemos notar no gráfico que à medida que os valores de x vão aumentando, suas imagens vão diminuindo.

Função composta

Vamos analisar um exemplo para entender o que é uma função composta. Consideremos os conjuntos:
A={-2,-1,0,1,2}
B={-2,1,4,7,10}
C={3,0,15,48,99}
E as funções:
f:AB definida por f(x)=3x+4
g:BC definida por g(y)=y2-1
Como nos mostra o diagrama acima, para todo x  A temos um único y  B tal que y=3x+4, e para todo y  B existe um único z  C tal que z=y2-1. Então, concluímos que existe uma função h de A em C, definida por h(x)=z ou h(x)=9x2+24x+15, pois:
h(x)=z     h(x)= y2-1
E sendo y=3x+4, então h(x)=(3x+4)2-1   h(x)= 9x2+24x+15.
A função h(x) é chamada função composta de g com f. Podemos indicá-la por g o f (lemos “g composta com f”) ou g[f(x)] (lemos “g de f de x”). Vamos ver alguns exercícios para entender melhor a ideia de função composta.
Exercícios resolvidos
1) Dadas as funções f(x)=x2-1 e g(x)=2x, calcule f[g(x)] e g[f(x)].
Resolução:
f[g(x)] = f(2x) = (2x)2-1 = 4x2-1
g[f(x)] = g(x2-1) = 2(x2-1) = 2x2-2
2) Dadas as funções f(x)=5x e f[g(x)]=3x+2, calcule g(x).
Resolução:
Como f(x)=5x, então f[g(x)]= 5.g(x).
Porém, f[g(x)]=3x+2, logo:
5.g(x)=3x+2, e daí g(x)=(3x+2)/5
3) Dadas as funções f(x)=x2+1 e g(x)=3x-4, determine f[g(3)].
Resolução: g(3)=3.3-4=5  f[g(3)]= f(5)= 52+1 = 25+1= 26.

Função inversa

Consideremos os conjuntos A={0,2,4,6,8} e B={1,3,5,7,9} e a função f:AB definida por y=x+1. A função f está representada no diagrama abaixo:
A função f é bijetora. A cada elemento x de A está associado um único elemento y de B, de modo que y=x+1. Porém, como f é bijetora, a cada elemento y de B está associado um único elemento x de A, de modo que x=y-1; portanto temos uma outra função g:BA, de modo que x=y-1 ou g(y)=y-1. Essa função está representada no diagrama abaixo:
Pelo que acabamos de ver, a função f leva x até y, enquanto a função g leva y até x. A função g:BA recebe o nome de função inversa de f e é indicada por f-1.
O domínio de f é o conjunto imagem de g, e o conjunto imagem de f é o domínio de g. Quando queremos, a partir da sentença y=f(x), obter a sentença de f-1(x), devemos realizar os seguintes passos:
1º) Isolamos x na sentença y=f(x)
2º) Pelo fato de ser usual a letra x como símbolo da variável independente, trocamos x por y e y por x.
Por exemplo, para obter a função inversa de f:IRIR definida por y=2x+1, devemos:
1º) isolar x em y=2x+1. Assim y=2x+1  y-1=2x   x=(y-1)/2
2º) trocar x por y e y por x: y=(x-1)/2.
Portanto a função inversa de f é: f-1(x)=(x-1)/2.
Observação: Para que uma função f admita a inversa f-1 é necessário que ela seja bijetora. Se f não for bijetora, ela não possuirá inversa.
Exercício resolvido
* Esse conteúdo foi criado pelo Só Matemática. Os gráficos e diagramas foram retirados do livro Matemática - Volume Único. Ed.Saraiva.

Comentários

Postagens mais visitadas deste blog

Regras para os cantos litúrgicos / Músicas que não deveriam ser cantadas na Missa

Pronúncia de líquido, liquidação e liquidificador

Italiano - Conjunções